Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of (nCo/n)+(nC1/n+1)+(nC2/n+2)+. . .+(nCn/2n) is equal to
Q. The value of
n
n
C
o
+
n
+
1
n
C
1
+
n
+
2
n
C
2
+
...
+
2
n
n
C
n
is equal to
1753
217
Binomial Theorem
Report Error
A
o
∫
1
x
n
−
1
(
1
−
x
)
n
d
x
B
1
∫
2
x
n
(
x
−
1
)
n
−
1
d
x
C
1
∫
2
x
n
−
1
(
1
−
x
)
n
d
x
D
0
∫
1
(
1
−
x
)
n
x
n
−
1
d
x
Solution:
S
=
n
n
C
0
+
n
+
1
n
C
1
+
n
+
2
n
C
2
+
...
+
2
n
n
C
n
=
(
x
1
)
r
=
m
C
r
x
2
m
−
3
r
n
C
1
0
∫
1
x
n
d
x
+
...
+
n
C
n
0
∫
1
x
2
n
−
1
d
x
=
0
∫
1
[
n
C
0
x
n
−
1
+
n
C
1
x
n
+
...
+
n
C
n
x
2
n
−
1
]
d
x
=
(
x
1
)
r
=
m
C
r
x
2
m
−
3
r
=
1
∫
2
x
n
(
x
−
1
)
n
−
1
d
x