Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle limx→∞((π/2) - tan-1 x)1/x is
Q. The value of
x
→
∞
lim
(
2
π
−
tan
−
1
x
)
1/
x
is
2223
164
VITEEE
VITEEE 2012
Report Error
A
0
20%
B
1
20%
C
-1
20%
D
e
40%
Solution:
Let
y
=
x
→
∞
lim
(
2
π
−
tan
−
1
x
)
Taking log on both sides, we get
(
form
∞
∞
)
lo
g
y
=
x
→
∞
lim
x
1
lo
g
(
2
π
−
tan
−
1
x
)
=
x
→
∞
lim
2
π
−
tan
−
1
x
(
−
1
+
x
2
1
)
(using L' Hospital's rule)
=
x
→
∞
lim
−
(
1
+
x
2
1
)
(
1
+
x
2
)
2
2
x
(using L' Hospital's rule)
=
x
→
∞
lim
1
+
x
2
−
2
x
=
0
⇒
y
=
e
0
=
1