Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle limn →∞ (1+2+3+...n/n2+100) is equal to :
Q. The value of
n
→
∞
lim
n
2
+
100
1
+
2
+
3
+
...
n
is equal to :
4753
199
BITSAT
BITSAT 2018
Report Error
A
∞
14%
B
2
1
71%
C
2
14%
D
0
0%
Solution:
Consider
n
→
∞
lim
n
2
+
100
1
+
2
+
3
+
...
n
=
n
→
∞
lim
(
n
2
+
100
)
n
(
n
+
1
)
(By using sum of
n
natural number
1
+
2
+
3
+
....
+
n
=
2
n
(
n
+
1
)
)
Take
n
2
common from
N
r
and
D
r
.
=
n
→
∞
lim
2
n
2
(
1
+
n
2
100
)
n
2
(
1
+
n
1
)
=
2
1