Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of lim limitsx→0 (cos (sin x) - cos x/x4)
Q. The value of
x
→
0
lim
x
4
cos
(
s
in
x
)
−
cos
x
1773
198
MHT CET
MHT CET 2007
Report Error
A
1/5
B
1/6
C
1/4
D
1/2
Solution:
x
→
0
lim
x
4
cos
(
sin
x
)
−
cos
x
=
x
→
0
lim
x
4
2
sin
(
2
x
+
s
i
n
x
)
sin
(
2
x
−
s
i
n
x
)
=
2
x
→
0
lim
[
(
2
x
+
s
i
n
x
)
sin
(
2
x
+
s
i
n
x
)
×
(
2
x
−
s
i
n
x
)
sin
(
2
x
−
s
i
n
x
)
×
(
2
x
x
+
s
i
n
x
)
(
2
x
3
x
−
s
i
n
x
)
]
=
2
x
→
0
lim
[
2
x
+
s
i
n
x
sin
(
2
x
+
s
i
n
x
)
×
2
x
−
s
i
n
x
sin
(
2
x
−
s
i
n
x
)
×
(
2
1
+
2
x
s
i
n
x
)
(
2
x
3
x
−
s
i
n
x
)
]
=
2
×
1
×
1
×
(
2
1
+
2
1
)
lim
x
→
0
2
x
3
x
−
s
i
n
x
=
x
→
0
lim
x
3
x
−
sin
x
=
x
→
0
lim
x
3
x
−
(
x
−
3
!
x
3
+
5
!
x
5
−
…
)
=
x
→
0
lim
(
3
!
1
−
5
!
x
2
+
…
)
=
6
1