Q.
The value of k so that the equations x2−x−12=0 and kx2+10x+3=0 may have one root in common, is
1523
199
Complex Numbers and Quadratic Equations
Report Error
Solution:
Let α be the common root
Then, α2−α−12=0
and kα2+10α+3=0
Solving the two equations, we get 117α2=−12k−3α=10+k1 ⇒(−12k−3)2=117(10+k) ⇒9(4k+1)2=117(10+k) ⇒(4k+1)2=13(10+k) ⇒16k2+8k+1=130+13k ⇒16k2−5k−129=0 ⇒16k2−48k+43k−129=0 ∴k=3
or k=16−43