Q.
The value of k for which both the roots of the equation 4x2−20kx+(25k2+15k−66)=0 are less than 2 , lies in
3621
205
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Let, f(x)=4x2−20kx+(25k2+15k−66)=0……………..(i)
Let the roots of f(x)=0beα,β
Since α,β are real. ∴Δ≥0 ⇒400k2−4.4(25k2+15k−66)≥0 ⇒−15k+66≥0⇒k≤522…………..(ii)
We have α,β<2 ∴α+β<4 ⇒−4(−20k)<4⇒k<54……………(iii) f(x)=4(x−α)(x−β) ∴f(2)=4(2−α)(2−β)=4(+)(+)=+ve ∴f(2)=16−40k+(25k2+15k−66)>0 ⇒25k2−25k−50>0⇒k2−k−2>0 ⇒(k+1)(k−2)>0⇒k<−1ork>2…………(iv)
Combining (ii),(iii)&(iv),wegetk∈(−∈fty,−1)