Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ x sin x sec3 x dx is
Q. The value of
∫
x
s
in
x
se
c
3
x
d
x
is
1589
172
MHT CET
MHT CET 2008
Report Error
A
2
1
[
se
c
2
x
−
t
an
x
]
+
c
B
2
1
[
x
se
c
2
x
−
t
an
x
]
+
c
C
2
1
[
x
se
c
2
x
+
t
an
x
]
+
c
D
2
1
[
se
c
2
x
+
t
an
x
]
+
c
Solution:
∫
x
sin
x
sec
3
x
d
x
=
∫
x
sin
x
c
o
s
3
x
1
d
x
=
∫
x
tan
x
⋅
sec
2
x
d
x
Put
tan
x
=
t
⇒
sec
2
x
d
x
=
d
t
and
x
=
tan
−
1
t
Then, it reduces to
∫
tan
−
1
t
⋅
t
d
t
=
2
t
2
tan
−
1
t
−
∫
2
(
1
+
t
2
)
t
2
d
t
=
2
x
t
a
n
2
x
−
2
1
t
+
2
1
tan
−
1
t
+
c
=
2
x
(
s
e
c
2
x
−
1
)
−
2
1
tan
x
+
2
1
x
+
c
=
2
1
[
x
sec
2
x
−
tan
x
]
+
c