Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ sec 3θ dθ is
Q. The value of
∫
sec
3
θ
d
θ
is
1628
184
Rajasthan PET
Rajasthan PET 2004
Report Error
A
2
1
l
o
g
(
sec
θ
+
t
an
θ
)
+
2
1
sec
θt
an
θ
+
c
B
l
o
g
(
sec
θ
+
t
an
θ
)
+
sec
θt
an
θ
+
c
C
l
o
g
(
sec
θ
−
t
an
θ
)
+
2
1
sec
θt
an
θ
+
c
D
None of the above
Solution:
Let
I
=
∫
sec
3
θ
d
θ
=
∫
I
sec
θ
II
sec
2
θ
d
θ
=
sec
θ
(
∫
sec
2
θ
d
θ
)
−
∫
[
{
d
x
d
(
sec
θ
)
}
∫
sec
2
θ
d
θ
]
d
θ
=
sec
θ
.
tan
θ
−
∫
sec
θ
tan
θ
.
tan
θ
d
θ
=
sec
θ
.
tan
θ
−
∫
sec
θ
tan
2
θ
.
d
θ
⇒
I
=
sec
θ
tan
θ
−
∫
sec
θ
(
sec
2
θ
−
1
)
d
θ
⇒
I
=
sec
θ
tan
θ
−
∫
sec
3
θ
d
θ
+
∫
sec
θ
d
θ
⇒
I
=
sec
θ
tan
θ
−
I
+
lo
g
(
sec
θ
+
tan
θ
)
+
c
1
⇒
2
I
=
sec
θ
tan
θ
+
lo
g
(
sec
θ
+
tan
θ
)
+
c
1
⇒
I
=
2
1
sec
θ
tan
θ
+
2
1
lo
g
(
sec
θ
+
tan
θ
)
+
2
c
1
Hence,
∫
sec
3
θ
d
θ
=
2
1
sec
θ
tan
θ
+
2
1
lo
g
(
sec
θ
+
tan
θ
)
+
c
(
∵
c
1
=
2
c
)