<br/>I=21∫ln2ℓn3sinx2+sin(ln6−x2)2xsinx2dx<br/>
Let x2=t⇒2xdx=dt
Also, when x=ℓn2,t=ℓn2
when x=ln3,t=ℓn3 <br/>∴I=21∫ℓn2ℓn3sint+sin(ℓn6−t)sintdt…(1)<br/> <br/>I=21∫ln2ln3sint+sin(ln6−t)sin(ℓn6−t)dt…(2)<br/>
Adding values of I in equations (1) and (2) <br/>2I=21∫ℓn2ln31dt=21(ln3−ln2)=21ℓn23⇒I=41ℓn23<br/>