Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫1e (1+x2 ln x/x+x2 ln x) d x is
Q. The value of
∫
1
e
x
+
x
2
l
n
x
1
+
x
2
l
n
x
d
x
is
2040
213
Integrals
Report Error
A
e
B
ln
(
1
+
e
)
C
e
+
In
(
1
+
e
)
D
e
−
In
(
1
+
e
)
Solution:
I
=
∫
1
e
(
x
1
+
1
)
d
x
−
∫
1
e
1
+
x
l
n
x
1
+
l
n
x
d
x
=
[
ln
x
+
x
]
1
e
−
[
ln
(
1
+
x
ln
x
)
]
1
e
=
e
−
ln
(
1
+
e
)