Let I=∫sin2x+sin4xcos3x+cos5xdx =∫(sin2x+sin4x)(cos2x+cos4x).cosxdx
Put sinx=t⇒cosxdx=dt ∴I=∫t2+t4[(1−t2)+(1−t2)2]dt ⇒I=∫t2+t41−t2+1−2t4+t4dt ⇒I=∫t2(t2+1)2−3t2+t4dt...(i)
Using partial fraction for y(y+1)y2−3y+2=1+YA+y+1B[where,y=t2] ⇒A=2,B=−6 ∴y(y+1)y2−3y+2=1+y2−y+16
Now, Eq. (i) reduces to, I=∫(1+t22−1+t26)dt =t−t2−6tan−1(t)+c =sinx−sinx2−6tan−1(sinx)+c