Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits1-1(x -[x])dx (where [. ] denotes greatest integer function) is
Q. The value of
−
1
∫
1
(
x
−
[
x
]
)
d
x
(where
[
.
]
denotes greatest integer function) is
4695
186
VITEEE
VITEEE 2018
Report Error
A
0
B
1
C
2
D
None of these
Solution:
I
=
−
1
∫
1
(
x
−
[
x
]
)
d
x
=
−
1
∫
1
x
d
x
−
∫
−
1
1
[
x
]
d
x
=
[
2
x
2
]
−
1
1
−
[
−
1
∫
0
[
x
]
d
x
+
0
∫
1
[
x
]
d
x
]
=
2
1
[
1
−
1
]
−
[
−
1
∫
0
(
−
1
)
d
x
+
0
∫
1
0.
d
x
]
[
I
f
−
1
≤
x
<
0
,
[
x
]
=
−
1
I
f
0
≤
x
<
1
,
[
x
]
=
0
]
=
0
−
[
−
x
]
−
1
0
−
0
=
0
−
[
−
0
−
(
−
1
)
]
=
1