Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫01 √x e√x d x is equal to
Q. The value of
∫
0
1
x
e
x
d
x
is equal to
2074
246
KEAM
KEAM 2012
Integrals
Report Error
A
2
(
e
−
2
)
B
2
(
e
−
2
)
C
2
e
−
1
D
2
(
e
−
1
)
E
2
e
−
1
Solution:
. Let
I
=
∫
0
1
x
e
x
d
x
Put
x
=
t
⇒
2
x
1
d
x
=
d
t
∴
I
=
∫
0
1
t
e
t
(
2
t
d
t
)
=
2
∫
0
1
t
2
e
t
d
t
=
2
[
t
2
e
t
−
∫
2
t
e
t
d
t
]
0
1
=
2
[
t
2
e
t
−
2
t
e
t
+
2
e
t
]
0
1
=
2
[
1
e
1
−
2
e
1
+
2
e
1
−
(
0
−
0
+
2
e
0
)
]
=
2
[
e
−
2
]