Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits0V| sin x| d x where n is a positive integer and V ∈[2 n π,(2 n+1) π], n ∈ N is
Q. The value of
0
∫
V
∣
sin
x
∣
d
x
where
n
is a positive integer and
V
∈
[
2
nπ
,
(
2
n
+
1
)
π
]
,
n
∈
N
is
18
151
Integrals
Report Error
A
4
n
−
1
+
cos
V
B
4
n
+
1
−
sin
V
C
4
n
+
2
−
sin
V
D
4
n
+
1
−
cos
V
Solution:
I
=
0
∫
V
∣
sin
x
∣
d
x
=
0
∫
2
nπ
∣
sin
x
∣
d
x
+
2
nπ
∫
V
∣
sin
x
∣
d
x
Now,
∣
sin
x
∣
has period
π
and
V
lies in 1 st quadratnt
Then,
I
=
2
n
0
∫
π
sin
x
d
x
+
2
nπ
∫
V
sin
x
d
x
=
4
n
+
[
−
cos
x
]
2
nπ
V
=
4
n
+
1
−
cos
V