Put t=sin2y in the integral 0∫sin2xsin−1tdt ∴dt=2sinydy=sin2ydy
Put t=cos2u in the integral 0∫cos2xcos−1tdt ∴dt=−2 cos{\,} u sin{\,} u du = - sin{\,} 2u {\,}du ∴ the given result =0∫xysin2ydy−π/2∫xusin2udu =0∫π/2ysin2ydy+π/2∫xysin2ydy−π/2∫xusin2udu =0∫π/2ysin2ydy =∣∣y(2−cos2y)∣∣0π/2−0∫π/21:−2cos2ydy =−4π(−1)+21∣∣2sin2y∣∣0π/2 =4π