Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits0π |cos x|3 dx is equal to (k/3), then the value of k is
Q. The value of
0
∫
π
∣
cos
x
∣
3
d
x
is equal to
3
k
, then the value of
k
is
2325
202
Integrals
Report Error
Answer:
4
Solution:
I
=
0
∫
π
∣
cos
x
∣
3
d
x
=
2
0
∫
π
/2
co
s
2
x
d
x
=
4
2
0
∫
(
3
cos
x
+
cos
3
x
)
d
x
[
∵
cos
3
θ
=
4
co
s
3
θ
−
3
cos
θ
]
=
2
1
[
3
s
in
x
+
3
s
in
3
x
]
0
π
/2
=
2
1
(
3
−
3
1
)
=
3
4
⇒
3
k
=
3
4
⇒
k
=
4