Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ limits0√ ln (π / 2) cos (ex2) 2 x ex2 d x is
Q. The value of
0
∫
l
n
(
π
/2
)
cos
(
e
x
2
)
2
x
e
x
2
d
x
is
38
169
Manipal
Manipal 2020
Report Error
A
1
B
1
+
sin
1
C
1
−
sin
1
D
(
sin
1
)
−
1
Solution:
Given,
I
=
0
∫
l
n
(
π
/2
)
cos
(
e
x
2
)
⋅
2
x
e
x
2
d
x
Put
e
x
2
=
t
⇒
2
x
e
x
2
d
x
=
d
t
Now, lower limit,
t
=
1
Upper limit,
t
=
e
l
n
π
/2
=
2
π
∴
I
=
1
∫
π
/2
cos
(
t
)
d
t
=
[
sin
t
]
1
π
/2
=
sin
(
2
π
)
−
sin
1
⇒
I
=
1
−
sin
1