Put x=tanz, dx=sec2zdz
when x=0 ; when x=∞,z=π/2 ∴ given integral =0∫π/2(1+tan2z)2(tanz)sec2zdz =0∫π/2sec2zztanzdz =0∫π/2zcoszsinzcos2zdz =0∫π/2zsinzcoszdz =210∫π/2z(sin2z)dz =21[∣∣z−(−2cos2z)∣∣0π/2−∫0π/2(1)(−2cos2z)dz] =21[−4πcosπ+21∣∣2sin2z∣∣0π/2] =21[4π+0] =8π