Let I =∫0∞(a2+x2)7dx
Put x=atanθ⇒dx=asec2θdθ
limit at x = 0⇒θ=0&x=∞⇒θ=2π ∴I=∫02πa14(1+tan2θ)7asec2θdθ =a131∫02πsec12θ1dθ=a131.∫02πcos12θ.dθ
But ∫02πsin2m−1θ.dθ=21B(m,n) &B(m,n)=m+nmn&21=π ∴I=∫02πsin0θ.cos12θdθ ∴m=21,n=213 ∴I=2a13121+21321.213 =2a131.6.5.4.3.2.1π.211.29.27.25.23.21.π =(2048231.a131)π