Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ √( e x -1/ e x +1) dx is equal to
Q. The value of
∫
e
x
+
1
e
x
−
1
d
x
is equal to
305
137
Integrals
Report Error
A
ln
(
e
x
+
e
2
x
−
1
)
−
sec
−
1
(
e
x
)
+
C
B
ln
(
e
x
+
e
2
x
−
1
)
+
sec
−
1
(
e
x
)
+
C
C
ln
(
e
x
−
e
2
x
−
1
)
−
sec
−
1
(
e
x
)
+
C
D
None of these
Solution:
I
=
∫
e
2
x
−
1
e
x
−
1
d
x
=
∫
e
2
x
−
1
e
x
d
x
−
∫
e
x
e
2
x
−
1
e
x
d
x
put
e
x
=
t
⇒
e
x
d
x
=
d
t
⇒
I
=
∫
t
2
−
1
d
t
−
∫
t
t
2
−
1
d
t
=
e
n
∣
∣
t
+
t
2
−
1
∣
∣
−
sec
−
1
(
t
)
+
C
,
where
t
=
e
x