Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\int \sqrt{\frac{ e ^{ x }-1}{ e ^{ x }+1}} dx$ is equal to

Integrals

Solution:

$I=\int \frac{e^x-1}{\sqrt{e^{2 x}-1}} d x$
$= \int \frac{e^x}{\sqrt{e^{2 x}-1}} d x-\int \frac{e^x}{e^x \sqrt{e^{2 x}-1}} d x$
put $e^x=t \Rightarrow e^x d x=d t$
$\Rightarrow I=\int \frac{d t}{\sqrt{t^2-1}}-\int \frac{d t}{t \sqrt{t^2-1}}$
$=e n\left|t+\sqrt{t^2-1}\right|-\sec ^{-1}(t)+C$,
where $t=e^x$