Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ ( cot x/√5+9 cot 2 x) d x is equal to (where C is constant of integration.)
Q. The value of
∫
5
+
9
c
o
t
2
x
c
o
t
x
d
x
is equal to
(where
C
is constant of integration.)
65
109
Integrals
Report Error
A
2
1
sin
−
1
(
3
2
s
i
n
x
)
+
C
40%
B
2
1
sin
−
1
(
2
3
s
i
n
x
)
+
C
11%
C
3
1
sin
−
1
(
2
3
s
i
n
x
)
+
C
13%
D
3
1
sin
−
1
(
3
2
s
i
n
x
)
+
C
36%
Solution:
∫
5
+
9
c
o
t
2
x
c
o
t
x
d
x
=
∫
5
s
i
n
2
x
+
9
c
o
s
2
x
c
o
s
x
d
x
=
∫
5
+
4
c
o
s
2
x
c
o
s
x
d
x
=
∫
9
−
4
s
i
n
2
x
c
o
s
x
d
x
Put
sin
x
=
t
∫
9
−
4
t
2
d
t
=
2
1
∫
4
9
−
t
2
d
t
=
2
1
sin
−
1
(
3
2
t
)
+
C
=
2
1
sin
−
1
(
3
2
s
i
n
x
)
+
C