Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ∫ (2 sin x+3 cos x/2 cos x+3 sin x) d x
Q. The value of
∫
2
c
o
s
x
+
3
s
i
n
x
2
s
i
n
x
+
3
c
o
s
x
d
x
146
168
Integrals
Report Error
A
13
12
en
∣2
cos
x
+
3
sin
x
∣
+
13
5
x
+
C
30%
B
13
5
ln
∣2
cos
x
−
3
sin
x
∣
+
13
12
x
+
C
10%
C
13
5
ln
∣2
cos
x
+
3
sin
x
∣
+
13
12
x
+
C
30%
D
13
5
ln
∣2
cos
x
+
3
sin
x
∣
−
13
12
x
+
C
30%
Solution:
∫
2
c
o
s
x
+
3
s
i
n
x
2
s
i
n
x
+
3
c
o
s
x
d
x
⇒
2
sin
x
+
3
cos
x
=
A
d
x
d
(
2
cos
x
+
3
sin
x
)
+
B
(
2
cos
x
+
3
sin
x
)
⇒
A
=
13
5
B
=
13
12
so
∫
2
c
o
s
x
+
3
s
i
n
x
2
s
i
n
x
+
3
c
o
s
x
d
x
=
13
5
∫
2
c
o
s
x
+
3
s
i
n
x
3
c
o
s
x
−
2
s
i
n
x
d
x
+
13
12
∫
1
⋅
d
x
13
5
ln
∣2
cos
x
+
3
sin
x
∣
+
13
12
x
+
C