Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of integral ∫ limits01 √(1-x/1+x)dx is
Q. The value of integral
0
∫
1
1
+
x
1
−
x
d
x
is
8896
228
VITEEE
VITEEE 2012
Integrals
Report Error
A
2
π
+
1
21%
B
2
π
−
1
50%
C
−
1
11%
D
1
18%
Solution:
Let
I
=
0
∫
1
1
+
x
1
−
x
d
x
=
0
∫
1
1
−
x
2
1
−
x
d
x
=
0
∫
1
1
−
x
2
1
d
x
−
0
∫
1
1
+
x
2
x
d
x
=
[
sin
−
1
x
]
0
1
−
0
∫
1
1
−
x
2
x
d
x
Put
t
2
=
1
−
x
2
⇒
2
t
d
t
=
−
2
x
d
x
⇒
t
d
t
=
−
x
d
x
∴
I
=
(
sin
−
1
1
−
sin
−
1
0
)
+
1
∫
0
t
t
d
t
=
2
π
+
[
t
]
1
0
=
2
π
−
1
Let
I
=
0
∫
1
1
+
x
1
−
x
d
x
Put
x
=
cos
2
θ
⇒
d
x
=
−
2
sin
2
θ
d
θ
∴
I
=
−
π
/4
∫
0
1
+
c
o
s
2
θ
1
−
c
o
s
2
θ
⋅
2
sin
θ
d
θ
=
−
2
π
/4
∫
0
c
o
s
θ
s
i
n
θ
⋅
2
sin
θ
cos
θ
d
θ
=
−
2
π
/4
∫
0
(
1
−
cos
2
θ
)
d
θ
=
−
2
[
θ
−
2
s
i
n
2
θ
]
π
/4
0
=
−
2
[
0
−
(
4
π
−
2
1
)
]
=
2
π
−
1