Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of integral ∫ e x ((2 tan x /1+ tan x )+ cot 2( x +(π/4))) dx is equal to where C is constant of integration.
Q. The value of integral
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
cot
2
(
x
+
4
π
)
)
d
x
is equal to
where
C
is constant of integration.
101
106
Integrals
Report Error
A
e
x
tan
(
4
π
−
x
)
+
C
17%
B
e
x
tan
(
x
−
4
π
)
+
C
54%
C
e
x
tan
(
4
3
π
−
x
)
+
C
4%
D
e
x
tan
(
x
−
4
3
π
)
+
C
25%
Solution:
Let
I
=
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
tan
2
(
x
−
4
π
)
)
d
x
=
∫
e
x
(
1
+
t
a
n
x
2
t
a
n
x
+
sec
2
(
x
−
4
π
)
−
1
)
d
x
=
∫
e
x
(
1
+
t
a
n
x
t
a
n
x
−
1
+
sec
2
(
x
−
4
π
)
)
d
x
=
∫
e
x
(
tan
(
x
−
4
π
)
+
sec
2
(
x
−
4
π
)
)
d
x
=
e
x
tan
(
x
−
4
π
)
+
C