Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of f(0), so that the function f(x)=(√a2-a x+x2-√a2+a x+x2/√a+x-√a-x) becomes continuous for all x, is given by
Q. The value of
f
(
0
)
, so that the function
f
(
x
)
=
a
+
x
−
a
−
x
a
2
−
a
x
+
x
2
−
a
2
+
a
x
+
x
2
becomes continuous for all
x
, is given by
73
191
Continuity and Differentiability
Report Error
A
a
3/2
B
a
1/2
C
−
a
1/2
D
−
a
3/2
Solution:
f
(
x
)
=
a
+
x
−
a
−
x
a
2
−
a
x
+
x
2
−
a
2
+
a
x
+
x
2
×
a
2
−
a
x
+
x
2
+
a
2
+
a
x
+
x
2
a
2
−
a
x
+
x
2
+
a
2
+
a
x
+
x
2
×
a
+
x
+
a
−
x
a
+
x
+
a
−
x
⇒
x
→
0
lim
f
(
x
)
=
x
→
0
lim
2
x
(
a
2
−
a
x
+
x
2
+
a
2
+
a
x
+
x
2
)
−
2
a
x
(
a
+
x
+
a
−
x
)
=
a
+
a
−
a
(
2
a
)
=
−
a