Since, y=xsinx+x
Let y1=xsinx and y2=x ∵y1=xsinx
Taking log on both sides, we get logy1=sinxlogx
On differentiating w.r.t. x, we get y11⋅dxdy1=cosxlogx+x1sinx ⇒dxdy1=xsinx[cosxlogx+x1sinx] ∴(dxdy1)x=2π=(2π)sin2π[cos2πlog2π+π2sin2π] =2π×π2=1
Now, y2=x
On differentiating w.r.t. x, we get dxdy2=2x1 ∴(dxdy2)x=2π=22π1=2π1
Since, ry=y1+y2 ∴dxdy=dxdy1+dxdy2 =1+2π1