Q.
The value of (k=1∑4(sin52πk−icos52πk))4 is (where i is iota)
2195
195
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Answer: 1
Solution:
k=1∑4(sin52πk−icos52πk) k=1∑4(−i2sin52πk−icos52πk) =−ik=1∑4ei52πk =−i[(−1)+{ei0+e5i2π+e5i4π+ei56π+ei58π}] (Sum of roots of the fifth root of unity is zero) =i ⇒((k=1∑4(sin52πk−icos52πk))4=i4=1