Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle lim x arrow π / 2( sec x) cot x is
Q. The value of
x
→
π
/2
lim
(
sec
x
)
c
o
t
x
is
318
153
Limits and Derivatives
Report Error
A
1
B
e
C
e
2
D
1/
e
Solution:
y
=
x
→
π
/2
lim
(
sec
x
)
c
o
t
x
(
∞
0
form)
∴
lo
g
y
=
x
→
π
/2
lim
cot
x
lo
g
sec
x
=
x
→
π
/2
lim
tan
x
lo
g
sec
x
(
∞
∞
form
)
=
x
→
π
/2
lim
sec
x
1
×
sec
2
x
sec
x
tan
x
(Using L'Hospital's Rule)
=
x
→
π
/2
lim
sec
2
x
tan
x
=
x
→
π
/2
lim
sin
x
cos
x
=
0
∴
y
=
e
0
=
1