We have x→1lim(cos−1x)21−x =x→1lim(cos−1x)2(1+x)(1−x)(1+x) =x→1lim(cos−1x)2(1+x)1−x =θ→0limθ2(1+cosθ)1−cosθ1,
where x=cosθ [∵x→1 or cosθ→1 or θ→0] =θ→0limθ21−cosθ(1+cosθ)1 =θ→0limθ22sin22θ(1+cosθ1) =21θ→0lim(2θsin2θ)2(1+cosθ)1 =21(1)2(1+1)1=41