Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ (ln (c o t x)/sin â¡ 2 x)dx is equal to (where, C is the constant of integration)
Q. The value of
∫
s
in
2
x
l
n
(
co
t
x
)
d
x
is equal to (where,
C
is the constant of integration)
1633
173
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
2
(
l
n
(
co
t
x
)
)
2
+
C
20%
B
4
(
l
n
(
co
t
x
)
)
2
+
C
29%
C
6
(
l
n
(
co
t
x
)
)
2
+
C
32%
D
−
4
1
(
l
n
(
co
t
x
)
)
2
+
C
19%
Solution:
∫
2
s
in
x
cos
x
l
n
(
co
t
x
)
d
x
=
I
(let)
Put
l
n
(
co
t
x
)
=
t
⇒
co
t
x
1
×
cose
c
2
x
d
x
=
−
d
t
⇒
cos
x
s
in
x
d
x
=
−
d
t
So,
I
=
2
1
∫
(
−
t
)
d
t
=
2
−
1
(
2
t
2
)
+
C
=
−
4
1
(
l
n
(
co
t
x
)
)
2
+
C