Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ (e√x/√x (1 + e2 √x))dx is equal to (where, C is the constant of integration)
Q. The value of
∫
x
(
1
+
e
2
x
)
e
x
d
x
is equal to (where,
C
is the constant of integration)
1397
210
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
(
t
an
)
−
1
(
2
e
x
)
+
C
22%
B
l
n
(
1
−
e
x
1
+
e
x
)
+
C
11%
C
2
(
t
an
)
−
1
(
e
x
)
+
C
44%
D
(
(
t
an
)
−
1
x
)
e
x
+
C
22%
Solution:
Let,
I
=
∫
x
(
1
+
e
2
x
)
e
x
d
x
Substituting
e
x
=
t
2
x
e
x
d
x
=
d
t
I
=
2
∫
1
+
t
2
d
t
=
2
(
tan
−
1
t
)
+
C
I
=
2
tan
−
1
(
e
x
)
+
C