Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ (d x/x (. xn + 1 .)) is equal to
Q. The value of
∫
x
(
x
n
+
1
)
d
x
is equal to
1205
180
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
n
1
(
l
o
g
)
e
(
x
n
+
1
x
n
)
+
c
B
n
1
(
l
o
g
)
e
(
x
n
x
n
+
1
)
+
c
C
(
l
o
g
)
e
(
x
n
+
1
x
n
)
+
c
D
None of these
Solution:
I=
∫
(
1
+
x
n
1
)
×
x
n
+
1
d
x
put
1
+
x
n
1
=
t
−
x
n
+
1
n
.
d
x
=
d
t
I
=
∫
t
−
n
d
t
=
−
n
1
l
n
∣
t
∣
+
c
I
=
−
n
1
l
n
(
1
+
x
n
1
)
+
c
I
=
n
1
l
n
(
x
n
+
1
x
n
)
+
c