Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ (cot x/√5 + 9 cot2 x)dx is equal to (where C is constant of integration.)
Q. The value of
∫
5
+
9
co
t
2
x
co
t
x
d
x
is equal to (where
C
is constant of integration.)
82
163
NTA Abhyas
NTA Abhyas 2022
Report Error
A
2
1
(
s
in
)
−
1
(
3
2
s
in
x
)
+
C
B
2
1
(
s
in
)
−
1
(
2
3
s
in
x
)
+
C
C
3
1
(
s
in
)
−
1
(
2
3
s
in
x
)
+
C
D
3
1
(
s
in
)
−
1
(
3
2
s
in
x
)
+
C
Solution:
∫
5
+
9
co
t
2
x
co
t
x
d
x
=
∫
5
s
i
n
2
x
+
9
co
s
2
x
cos
x
d
x
=
∫
5
+
4
co
s
2
x
cos
x
d
x
=
∫
9
−
4
s
i
n
2
x
cos
x
d
x
Put
s
in
x
=
t
∫
9
−
4
t
2
d
t
=
2
1
∫
4
9
−
t
2
d
t
=
2
1
(
s
in
)
−
1
(
3
2
t
)
+
C
=
2
1
(
s
in
)
−
1
(
3
2
s
in
x
)
+
C
.