Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ (1/(2 x - 1) √x2 - x)dx is equal to (where c is the constant of integration)
Q. The value of
∫
(
2
x
−
1
)
x
2
−
x
1
d
x
is equal to (where
c
is the constant of integration)
45
150
NTA Abhyas
NTA Abhyas 2022
Report Error
A
se
c
−
1
(
x
−
1
)
+
c
B
se
c
−
1
(
2
x
−
1
)
+
c
C
t
a
n
−
1
x
+
c
D
t
a
n
−
1
(
2
x
−
1
)
+
c
Solution:
Let
I
=
∫
(
2
x
−
1
)
x
2
−
x
1
d
x
Multiply denominator and numerator by
2
,
we get
I
=
∫
(
2
x
−
1
)
4
x
2
−
4
x
2
d
x
=
2
∫
(
2
x
−
1
)
(
2
x
−
1
)
2
−
1
d
x
Put
2
x
−
1
=
t
⇒
2
d
x
=
d
t
Now,
I
=
∫
t
t
2
−
1
d
t
=
se
c
−
1
t
+
c
=
se
c
−
1
(
2
x
−
1
)
+
c