Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle ∫ 0(π /3)log(1 + √3 tan x)dx is equal to
Q. The value of
∫
0
3
π
l
o
g
(
1
+
3
t
an
x
)
d
x
is equal to
198
151
NTA Abhyas
NTA Abhyas 2022
Report Error
A
π
l
o
g
2
B
2
π
l
o
g
2
C
3
π
l
o
g
2
D
4
π
l
o
g
2
Solution:
Let,
I
=
∫
0
3
π
lo
g
(
1
+
3
tan
x
)
d
x
I
=
∫
0
3
π
lo
g
[
1
+
3
tan
(
3
π
−
x
)
]
d
x
=
∫
0
3
π
[
lo
g
(
1
+
3
tan
(
1
+
3
t
a
n
x
3
−
t
a
n
x
)
]
d
x
=
∫
0
3
π
lo
g
(
1
+
3
t
a
n
x
1
+
3
t
a
n
x
+
3
−
3
t
a
n
x
)
d
x
⇒
I
=
∫
0
3
π
(
lo
g
4
−
lo
g
(
1
+
3
tan
x
))
d
x
⇒
I
=
lo
g
4
⋅
3
π
−
I
⇒
I
=
6
π
lo
g
4
=
3
π
lo
g
2.