Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of displaystyle∫0π/2 log| tan x+ cot x|dx is
Q. The value of
∫
0
π
/2
lo
g
∣
tan
x
+
cot
x
∣
d
x
is
2809
194
Integrals
Report Error
A
π
lo
g
2
26%
B
−
π
lo
g
2
19%
C
2
π
lo
g
2
37%
D
−
2
π
lo
g
2
19%
Solution:
0
∫
π
/2
l
o
g
∣
t
an
x
+
co
t
x
∣
d
x
=
0
∫
π
/2
l
o
g
∣
∣
cos
x
s
in
x
s
i
n
2
x
+
co
s
2
x
∣
∣
d
x
=
0
∫
π
/2
l
o
g
(
s
in
x
cos
x
1
)
d
x
[
∵
s
in
x
,
cos
x
a
re
+
V
e
in the first quadrant]
=
0
∫
π
/2
l
o
g
1
d
x
−
0
∫
π
/2
l
o
g
s
in
x
d
x
−
0
∫
π
/2
l
o
g
cos
x
d
x
=
0
−
(
−
2
π
l
o
g
2
)
−
(
−
2
π
l
o
g
2
)
=
2
π
l
o
g
2
+
2
π
l
o
g
2
=
π
l
o
g
2