Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of definite integral ∫ limits0π (π tan x/ sec x+ tan x) d x is equal to
Q. The value of definite integral
0
∫
π
s
e
c
x
+
t
a
n
x
π
t
a
n
x
d
x
is equal to
47
101
Integrals
Report Error
A
π
(
1
−
π
)
B
π
(
π
−
2
)
C
π
(
2
−
π
)
D
π
(
π
−
1
)
Solution:
Let
I
=
0
∫
π
1
+
s
i
n
x
π
s
i
n
x
d
x
=
2
π
0
∫
2
π
1
+
s
i
n
x
s
i
n
x
d
x
=
2
π
0
∫
2
π
1
+
c
o
s
x
c
o
s
x
d
x
(Using king property)
∴
I
=
2
π
0
∫
2
π
1
+
c
o
s
x
(
1
+
c
o
s
x
)
−
1
d
x
=
2
π
0
∫
2
π
(
1
−
2
c
o
s
2
2
x
1
)
d
x
=
2
π
0
∫
2
π
(
1
−
2
1
sec
2
2
x
)
d
x
=
2
π
(
x
−
tan
2
x
)
0
2
π
=
2
π
(
2
π
−
1
)
=
π
(
π
−
2
)
.