Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of definite integral ∫ limits0(π/12) ( tan 2 x-3/3 tan 2 x-1) dx is equal to
Q. The value of definite integral
0
∫
12
π
3
t
a
n
2
x
−
1
t
a
n
2
x
−
3
d
x
is equal to
615
67
Integrals
Report Error
A
12
π
+
3
1
ln
(
2
−
3
3
−
1
)
B
8
π
+
3
1
ln
(
2
−
3
3
−
1
)
C
12
π
−
3
1
ln
(
2
−
3
3
−
1
)
D
8
π
−
3
1
ln
(
2
−
3
3
−
1
)
Solution:
Put
tan
x
=
t
⇒
sec
2
x
d
x
=
d
t
So
I
=
0
∫
12
π
3
t
a
n
2
x
−
1
t
a
n
2
x
−
3
d
x
=
0
∫
2
−
3
(
3
t
2
−
1
)
(
1
+
t
2
)
t
2
−
3
d
t
=
0
∫
2
−
3
(
1
+
t
2
1
−
3
t
2
−
1
2
)
d
t
=
0
∫
2
−
3
1
+
t
2
d
t
−
3
2
0
∫
2
−
3
t
2
−
(
3
1
)
2
d
t
=
12
π
+
3
1
ln
(
2
−
3
3
−
1
)