Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of definite integral ∫ limits01 (1-x/(1+x2)2) d x is equal to
Q. The value of definite integral
0
∫
1
(
1
+
x
2
)
2
1
−
x
d
x
is equal to
141
80
Integrals
Report Error
A
8
π
B
4
π
C
6
π
D
12
π
Solution:
0
∫
1
(
1
+
x
2
)
2
1
−
x
d
x
=
0
∫
1
(
I
1
1
+
x
2
)
2
d
x
−
0
∫
1
(
I
2
1
+
x
2
)
2
x
d
x
I
1
=
0
∫
1
(
1
+
x
2
)
2
d
x
Put
x
=
tan
θ
,
sec
2
θ
d
θ
=
d
x
0
∫
4
π
s
e
c
4
θ
s
e
c
2
θ
d
θ
=
0
∫
4
π
cos
2
θ
d
θ
=
2
1
0
∫
4
π
(
1
+
cos
2
θ
)
d
θ
=
2
1
[
θ
+
2
s
i
n
2
θ
]
0
4
π
=
2
1
[
4
π
+
2
1
]
=
8
π
+
4
1
I
2
=
0
∫
1
(
1
+
x
2
)
2
x
d
x
Put
1
+
x
2
=
t
,
∴
2
x
d
x
=
d
t
,
x
d
x
=
2
d
t
=
2
1
1
∫
2
t
2
d
t
=
2
1
[
−
t
1
]
1
2
=
−
2
1
[
2
1
−
1
]
=
−
2
1
(
−
2
1
)
=
4
1
∴
I
1
−
I
2
=
8
π
+
4
1
−
4
1
=
8
π