Let I=π40∫π1+2∣cosx∣sinxxsin2xdx...(1)
Applying king property, we get I=π40∫π1+2∣cosx∣sinx(π−x)sin2xdx...(2) ∴(1)+(2) ⇒2I=π4×π0∫π1+2∣cosx∣sinxsin2xdx ⇒I=24×20∫2π1+sin2xsin2xdx ∴I=40∫2π1+sin2xsin2xdx [Using Queen Property] ....(3)
Apply king property, we get I=40∫2π1+sin2xcos2xdx....(4) ∴(3)+(4) ⇒2I=40∫2π(cosx+sinx)2dx⇒I=20∫2π(1+tanx)2sec2xdx
So, I=21∫∞t2dt=−2(t1)1∞=−2(0−1)=2
Hence, I=2.