Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of cot displaystyle ∑n=123 cot-1(1+ displaystyle ∑k=1n 2k ) is
Q. The value of cot
{
n
=
1
∑
23
co
t
−
1
(
1
+
k
=
1
∑
n
2
k
)
}
is
2287
183
JEE Main
JEE Main 2013
Inverse Trigonometric Functions
Report Error
A
25
23
0%
B
23
25
100%
C
24
23
0%
D
23
24
0%
Solution:
We have, cot
[
n
=
1
∑
23
co
t
−
1
(
1
+
k
=
1
∑
n
2
k
)
]
⇒
cot
[
n
=
1
∑
23
co
t
−
1
(
1
+
2
+
4
+
6
+
8
+
......
+
2
n
)
]
⇒
cot
[
n
=
1
∑
23
co
t
−
1
{
1
+
n
(
n
+
1
)}
]
⇒
cot
[
n
=
1
∑
23
t
a
n
−
1
1
+
n
(
n
+
1
)
1
]
⇒
cot
[
n
=
1
∑
23
t
a
n
−
1
{
1
+
n
(
n
+
1
)
(
n
+
1
)
−
n
}
]
⇒
cot
[
n
=
1
∑
23
(
t
a
n
−
1
(
n
+
1
)
−
t
a
n
−
1
l
n
n
)
]
⇒
cot
[(
t
a
n
−
1
2
−
t
a
n
−
1
1
)
+
(
t
a
n
−
1
3
−
t
a
n
−
1
2
)]
+
(
t
a
n
−
1
4
−
t
a
n
−
1
3
)]
+
...
+
(
t
a
n
−
1
24
−
t
a
n
−
1
23
)]
⇒
cot
(
t
a
n
−
1
24
−
t
a
n
−
1
1
)
⇒
cot
(
t
a
n
−
1
1
+
24.
(
1
)
24
−
1
)
=
co
t
(
t
a
n
−
1
25
23
)
=
co
t
(
co
t
−
1
23
25
)
=
23
25