Consider the unit circle with centre at the origin. Let x be the angle P4OP1 and y be the angle P1OP2. Then, (x+y) is the angle P4OP2. Also, let (−y) be the angle P4OP3. Therefore, P1,P2,P3 and P4 will have the coordinates P1(cosx,sinx),P2[cos(x+y),sin(x+y)], P3[cos(−y),sin(−y)] and P4(1,0).
Consider the triangles P1OP3 and P2O4. They are congruent. Therefore, P1P3 and P2P4 are equal. By using distance formula, we get P1P32=[cosx−cos(−y)]2+[sinx−sin(−y)]2 =(cosx−cosy)2+(sinx+siny)2 =cos2x+cos2y−2cosxcosy+sin2x +sin2y+2sinxsiny =2−2(cosxcosy−sinxsiny)
Also, P2P42=[1−cos(x+y)]2+[0−sin(x+y)]2 =1−2cos(x+y)+cos2(x+y)+sin2(x+y) =2−2cos(x+y)
Since, P1P3=P2P4, we have P1P32=P2P42
Therefore, 2−2(cosxcosy−sinxsiny) =2−2cos(x+y)
Hence, cos(x+y)=cosxcosy−sinxsiny