We have, cos[tan−1{sin(cot−1x)}]
Let cot−1x=α ⇒cotα=x ⇒cosecα=1+x2 ⇒sinα=1+x21 ⇒α=sin−11+x21
Hence, cos[tan−1{sin(cot−1x)}] =cos[tan−1{sin(sin−11+x21)}] =cos[tan−11+x21] =cos[x2+2x2+1] [∵ If we let tan−11+x21=β tanβ=1+x21 secβ=1+1+x21=x2+1x2+2 cosβ=x2+2x+1] =x2+2x2+1