Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of c in (0, 2) satisfying the mean value theorem for the function f(x) = x(x - 1)2, x ∈ [0, 2] is equal to
Q. The value of
c
in
(
0
,
2
)
satisfying the mean value theorem for the function
f
(
x
)
=
x
(
x
−
1
)
2
,
x
∈
[
0
,
2
]
is equal to
5947
223
BITSAT
BITSAT 2018
Report Error
A
4
3
27%
B
3
4
55%
C
3
1
18%
D
3
2
0%
Solution:
f
(
x
)
=
x
(
x
−
1
)
2
;
x
∈
[
0
,
2
]
f
′
(
c
)
=
b
−
a
f
(
b
)
−
f
(
a
)
;
f
(
2
)
=
2
,
f
(
1
)
=
0
f
′
(
x
)
=
3
x
2
−
4
x
+
1
⇒
f
′
(
c
)
=
3
c
2
−
4
c
+
1
Thus,
3
c
2
−
4
c
+
1
=
2
−
0
f
(
2
)
−
f
(
0
)
=
2
−
0
2
−
0
=
1
⇒
c
=
3
4