Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of | beginmatrix cos (x-a) cos (x+a) cos x sin (x+a) sin (x-a) sin x cos a tan x cos a cot x cos ec2x endmatrix | is equal to:
Q. The value of
∣
∣
cos
(
x
−
a
)
sin
(
x
+
a
)
cos
a
tan
x
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cot
x
cos
x
sin
x
cos
ec
2
x
∣
∣
is equal to:
1788
210
KEAM
KEAM 2006
Report Error
A
1
B
s
in
a
cos
a
C
0
D
s
in
x
cos
x
E
cosec
2
x
Solution:
∣
∣
cos
(
x
−
a
)
sin
(
x
+
a
)
cos
a
tan
x
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cos
x
cos
x
sin
x
cos
ec
2
x
∣
∣
=
∣
∣
cos
(
x
−
a
)
+
cos
(
x
+
a
)
sin
(
x
+
a
)
+
sin
(
x
−
a
)
cos
a
(
tan
x
+
cot
x
)
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cot
x
cos
x
sin
x
cos
ec
2
x
∣
∣
=
∣
∣
2
cos
x
cos
a
2
sin
x
cos
a
cos
a
(
t
a
n
x
t
a
n
2
x
+
1
)
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cot
x
cos
x
sin
x
cos
ec
2
x
∣
∣
=
2
cos
a
∣
∣
cos
x
sin
x
2
t
a
n
x
1
+
t
a
n
2
x
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cot
x
cos
x
sin
x
cos
ec
2
x
∣
∣
=
2
cos
a
∣
∣
cos
x
sin
x
cos
ec
2
x
cos
(
x
+
a
)
sin
(
x
−
a
)
cos
a
cot
x
cos
x
sin
x
cos
ec
2
x
∣
∣
=
2
cos
a
×
0
=
0