Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \left| \begin{matrix} \cos (x-a) & \cos (x+a) & \cos x \\ \sin (x+a) & \sin (x-a) & \sin x \\ \cos a\tan x & \cos a\cot x & \cos ec2x \\ \end{matrix} \right| $ is equal to:

KEAMKEAM 2006

Solution:

$ \left| \begin{matrix} \cos (x-a) & \cos (x+a) & \cos x \\ \sin (x+a) & \sin (x-a) & \sin x \\ \cos a\tan x & \cos a\cos x & \cos ec2x \\ \end{matrix} \right| $ $ =\left| \begin{matrix} \cos (x-a)+\cos (x+a) & \cos (x+a) \\ \sin (x+a)+\sin (x-a) & \sin (x-a) \\ \cos a(\tan x+\cot x) & \cos a\,\cot x \\ \end{matrix} \right. $ $ \left. \begin{matrix} \cos x \\ \sin x \\ \cos ec2x \\ \end{matrix} \right| $ $ =\left| \begin{matrix} 2\cos x\cos a & \cos (x+a) & \cos x \\ 2\sin x\cos a & \sin (x-a) & \sin x \\ \cos a\left( \frac{{{\tan }^{2}}x+1}{\tan x} \right) & \cos a\cot x & \cos ec2x \\ \end{matrix} \right| $ $ =2\cos a\left| \begin{matrix} \cos x & \cos (x+a) & \cos x \\ \sin x & \sin (x-a) & \sin x \\ \frac{1+{{\tan }^{2}}x}{2\tan x} & \cos a\cot x & \cos ec2x \\ \end{matrix} \right| $ $ =2\cos a\left| \begin{matrix} \cos x & \cos (x+a) & \cos x \\ \sin x & \sin (x-a) & \sin x \\ \cos ec2x & \cos a\,\cot x & \cos ec2x \\ \end{matrix} \right| $ $ =2\cos a\times 0=0 $