Given equation is (1−a2)x2+2ax−1=0 ⇒x2+(1−a2)2ax−(1−a2)1=0 ⇒x2−(a2−1)2ax+(a2−1)1=0 ⇒x2−[(a−1)1+(a+1)1]x+(a−1)1×(a+1)1=0
Therefore, roots are a−11,a+11
Its discriminant is D=(2a)2−4(1−a2)(−1)=4
Given, 0<a−11<1,0<a+11<1
Now, a−11>0⇒a>1, a−11<1⇒a−11−1<0 ⇒a−12−a<0⇒a<1ora>2 ∴a>2 .... (1)
and a+11>0⇒a>−1
and a+11<1⇒−a+1a<0 ⇒a<−1ora>0 ∴a>0 ... (2)
From (1) and (2), a>2