Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ((5050) ∫ limits01 (1-x50)100 dx / ∫ limits01 (1-x50)100 dx ) is
Q. The value of
0
∫
1
(
1
−
x
50
)
100
d
x
(
5050
)
0
∫
1
(
1
−
x
50
)
100
d
x
i
s
2453
184
IIT JEE
IIT JEE 2006
Integrals
Report Error
A
B
C
D
Solution:
Let
I
2
=
0
∫
1
(
1
−
x
50
)
101
d
x
=
[
(
1
−
x
50
)
101
⋅
x
]
0
1
+
0
∫
1
(
1
−
x
50
)
100
50
⋅
x
49
⋅
x
d
x
[using integration by parts]
=
0
−
0
∫
1
(
50
)
(
101
)
(
1
−
x
50
)
100
(
−
x
50
)
d
x
=
−
(
50
)
(
101
)
0
∫
1
(
1
−
x
50
)
101
d
x
+
(
50
)
(
101
)
0
∫
1
(
1
−
x
50
)
100
d
x
=
5050
I
2
+
5050
I
1
∴
I
2
+
5050
I
2
=
5050
I
1
⇒
I
2
(
5050
)
I
2
=
5051