tan3A=1−3tan2A3tanA−tan3A…(i)
Putting A=10∘ in (i), we get ∴31(1−3tan210∘)=tan10∘(3−tan210∘)…(ii)
Squaring (ii) both sides, we get (1−3tan210∘)2=3tan210∘(3−tan210∘)2 ⇒3tan210∘(9+tan410∘−6tan210∘) =1+9tan410∘−6tan210∘ ⇒3tan610∘−27tan410∘+33tan210∘=1